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In this work we investigate natural motlions of a twin gyrocompass which does
not possess properties of a space gyrocompass,

Within the limits of the precessional theory we are lnvestigating the

validity of the simplified theory of a gyrocompass which has been introduced
by Geckeler,

We investigate the stabllity of the trivial solution of the equations
with varliations for the regular circulation of a ship. We have obtalned
explicit expressions for the characteristic indices of the system of equa-
tions with periodic coefficients, describing the motion of the sensing ele-
ment of & gyrocompass during & ciroulation,

1. The equations with varlations characterizing the motion of the sensing
element of a twin gyrocompass of the AndchUtz type, in which the fcrced bal-
listic deviations are fully compensated, have the form [ 2]

%(Va)'—PlB—zBsineomzo, ¥ 4om—8+Q8=0

ZBsme,o (1 1)

B+22—Qr=0, (@Bsined) —Ply + L QVa =0

The notation is the same as in the paper [2]: a dot denotes the time
drivative,

If we neglect in (1.1) terms containing the angular velocity Q as a
factor (more exactly, the g° component of the angular velocity vector, where
2° 18 the vertical axis of the triad 0x°y°x° oriented along the vector y
of the velocity of the suspension point [1 and 2]) then the system (1.1) can
be dbroken into two independent systems of the form

f’gL (Vay — PIR = 0, 0

. s -
) T+ZBsineob_ 1.2)
B+ 5 =0, (2B sin g48) — Ply =0
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Systems of the form (1.2) were investigated first by Geckeler in the
papers [3 and 4] known to the experts in the theory and applications of
gyroscopes. QOeckeler failed failed to give a rigorous derivation of condi~
tions under which the simplified system (1.2) is permissible.

For a space gyrocompass [1] 1t has been shown in [5] that the equations
of motion of its base on the Barth's sphere can be reduced to (1.2). A simi-
lar investigation for a gyrocompass which does not possess properties of a
space gyrocompass has never been carried out, as far as we know, and for

%gig)reason we make here a special study on the applicability of the system

2. Purther on we shall need certain auxiliary systems, arising from
(1.1) and (1.2). Substituting in (1.1)

Vo =z, 2Bsinegd/Pl=g, (2.1)
and denoting 8 and vy , respectively, by x, and x, we cbtain

( lf!i) 2.2)

P = 3B sine,

z, — gz, — Qz, =0, x3'+~§x4+ Qz, =0
:1:{«}—%— — Qxy=0, z{—gry+ Qz,=0
From (1.2) we have,respectively
z, — gz, =0, =z + —%2- 2,=0, =z, —i—% =0, z/—gr;=0 (2.3)
The roots of the equations of the independent systems (2.3) are

ris = Vi, rsq = & pi (v=Vg/R) (2.4)
and they correspond to the undamped vibrations of a gyrocompass with the
frequencies v and P . From (2.2) we have also

7+ V= Q) — 20z, — Qz, =0

z (PP — Q) zy + 2Qz + Xz =0

In some cases it is advisible to introduce the variables x; and x, 1in
another way, assuming, for example

(2.5)

Va = Ru cos ga,, 8 = z,sin@/sin g (2.6)
If the parameters of a compass are subJected to the condition
2Bg = PlRu 2.7
and if we set g = const , then we obtain from (1.1) [2]
. vE . p? . -
z, —mx2~9m¢x4=0, Z4 +—{ﬁ~usmcpx4+ Qz,=0

(2.8)

2
z, + ucospz, — Qz; =0, x(,'——;%ﬁaxs—{—g cot Py =0

Regarding 0 as a given fungtion of ¢ , we can pase to the variables
g, and £, in (2.5) if we substitute [8] (*)

*) Let us mention that a transformation of the form (2.9) has been previ-
ously used in the works [6 and 7] which do not deal strictly with the theory
of a gyrocompass. In the papers [5 and 8] on the theory of a gyrocompass
there are no references to those earlier sources,

(Cont. on opposite page)
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t

§1 .'l.'l CoS 0 —_— 34 Sin 9
&, = z,8in0 + z, cosd (0 = S 2 d’) (2.9)

0

From (2.9) we have the reciprocal relations
z, =k, cos0 + &, sing, zg = — E;5in@ + §,cos0  (2.10)

from which we obtain the equatlions for £, and ¢, in the form

BT+ Y, (p v — (PP — V¥ cos20] &, — Y, (p® — v?) sin 208, = 0 2.41)
st Ve [PV (P — V) cos 201 B — Yy (bF — V) sin 208, =0
Together with the system (2.5) we shall consider the system [7]
z," + 2bz) + (v — Q%) z, — 2Qz, — Qz, =0 949
xS+ 2bz + (PP — Q) 2z, + 20z, + Qz, =0 (212)
containing arbitrarily small dlssipative terms.
Using the transformation (2.9) we obtain
g+ 2b%," + 1/, [P2 + v? — (p* — Vv?) cos 201 E,+
+ [26Q — ¥/, (p* — v?) sin 201 &, = O
2 (p ) si & 2.13)

By + 208, + Y,y [p®* + v2 4 (p? — v¥) cos 20] &, —
— [2bQ 4 Y/, (p* — v*) sin 281 ¢, = O

We shall dwell brlefly on these cages of the motlion of the base when the
solution of the problem does not present special difficulties.

It occurs in all cases when the quantity Q can be regarded constant,
i.e. when the gyrocompass works on a base fixed with respect to the Earth's
surface, and also when the motion is along a parallel of latitude with a
constant eastern component Vg of its velocity. In the first case Q = using,
in the second case we set Q=usin ¢ (14 vy /Rucosp). In these cases Equa-
tions (2.2) can be integrated in a closed form, consequently we can easily
f£ind out the influence of the terms containing Q as a factor.

When a ship moves arbitrarily in a straight course line with conatant velo-
city the latitude of its position varies as a rule very slowly. Consequently
we can neglect 1ts rate of change and at every given latitude we can assume
that 0 = const . We shall not analyse these cases [11]. We shall only show
that under these speclal conditions the motion of a gyrocompass which does

The transformation (2.9) leads to systems with constant coefficilents, of
the form of the equations of motion of the Schuler pendulum, which control
the motion of a gyrocompass possessing the propeties of the Geckeler-
Ishlinskii space gyrocompass. This problem is dealt with in the paper [5]
in which, by using Liapunov's theorem on the applicabllity of the equations
with perlodic’coefficients to the equations with constant coefficients, are
derived explicit expreasions for the four first integrals of the initial
system, which determine the form of the nonsingular transformation (2.9).
The equations of motion of a gyrocompass which does not possess properties
of a space gyroscompass, do not have those integrals, hence in this case the
Ishlinskii-Andreev transformation, applicable to systems with constant coef-
ficlents, cannot be used. In a more general case the problem was investi-
gated by Liashenko [9] who used the theorem of N.P. Erugin. The work of
Andr;ev [10] does contain not very exact information on the essence of the
problem.
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not possess the properties of a space gyrocompass, can be described with

sufficient, for all practical purposes, accuracy by systems of equations of
the Geckeler type (1.2).

3. Let a ship describe a regular circulation with a constant velocity v
and from a certain initial course %o - The northern and the eastern compo-
nents of veloclty of the ship vary, respectively, as follows

vy = vcos (P, + o), vg = vsin (P, + o) 3.1)
where w 18 the angular frequency of the circulation, the upper signs refer
to the right circulation, the lower to the left one., Considering the left
eirculation and keeping in the expression for °Q only the primcipal term
which takes care of the rate of change of the course-line deviation, we shall
assume as in [ 2]

VN . . v
Q = g = Bosin (o — wf) (b= W) (3.2)
Consequently, by (2.9) we have
6 = [cos (P — of) — cos Y] (3.3)

Since the nonsingular transformation (2.9) which reduces the system (2.12)
to (2.13), possesses in the case of a circulation of a ship periodic coeffi-
cients with the period 2n/w , the characteristic indices can be derived from
the system (2.13).

To obtain explicit expressions for the characteristic indices we shall
apply to (2.13) the method of averaging [12] replacing periodic coefficients
of this system by their average values for one period of circulation,

When averaging the functions sin 29 and cos 29 , where 6(¢) is given
by (3.3), it is convenient to use the following expansions

sin (2p cos x) = 2 § (—1)Vzne1 (2p) cos [(2n + 1) z]

n=0 - (3.4)

cos (2ucos z) = Jo (2) + 2] (—1)"V g (20) cos (2nz)
n=1

where J, (2)1) 1s a Bessel function of an integral, nonnegative index,

As a result of averaging the system (2,13) becomes

B+ 20E, ++ Y, [p® + v2 — (p* — vB) J, (2) cos (2p cos )] §; +
+ Yy (p? — v?) J, (2p) sin (2p cosp) E, = 0

B+ 2bEy -+ Yy [p? + 2+ (0P — V) T, (1) cos (2 cos )] Es +
+ Yy (p* — v?) J, (2) sin (2p cos ) &, = 0 (3.5)
Introducing in (3.5) the new variables y, and u, given by Formulas
E, = u, cos (u cosWp) + uysin ( cosy,)
B, = — uy sin (b cosy) + U, cos (p €osPy) (3.6)
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we obtaln for y; and u, two independent equations

ul" + 2bu1‘ + k12u1 = 0, ' uz" + 2bu2. + k22u2 = 0 (3.7)

where
kit =Y, [p* + v — (p* — v*) T, ()]
k=, [p* + v + (p* — V1) T, (20)] 3.8)

The roots of the characteristic equations, corresponding to (3.7) have at
» # O nonvanishing real parts, therefore the application of the method of
averaging is legitimate [12]. Since » > 0, and k° and k7 are always
greater than zero, the gyrocompass 1s stable at a sufficlently small perilod
of circulation 7 . In practice, this condltion is as a rule satlsfled,
because 7T 1is always small as compared with the perlod of the natural oscil-
lation of the compass T, {2 and 12].

In this way by introducing arbitrarily small dissipative forces we make a
gyrocompass asymptotically stable. When damping is weak the characteristic
indices x, of the system (2.13) approach the roots of the characteristic
equations corresponding to {3.7) and we can set [12]

Ky = — b Ky, Ry, g = — b LRyl 3.9
Without damping

Ay, g = t kli, Uy, 4 = + kzl (3.10)
In practice we have always p < 1 , Taking this into account and keeping
only the first two terms in the expansion of Ja(a.x) in powers of u, we

obtain from (3.8) an expression very convenient for calculating the squares
of the frequencles

B = w2 41, (p* — v pt, k= p* — 1Y, (p* —v)p*  (3.11)
To the frequencies 4, and k, correspond, respectively, the perlods 7T,
and T, which are determined with accepted degree of accuracy by Formulas

L R TS

If the parameter . is s0 small that we can set Jb(ep) =1, then from
(3.8) we obtain k,;= v and ky= p , hence and also from (3.10)

Ryg = +vi, Ky q = + pi (3.13)
These values of the characteristic lndices coincide with the expressions

(2.4) for the roots of the characteristic equations, obtained from the system
of Geckeler (1.2) and (2.3).

If the compass parameters are such that P = v , then from {3.8) follows
that J; = %;= v, and then x;,,=+% Vi , X3, 4=+ vi . These expressions for
the characteristic indices were obtained previously in [5 and 8].

4, Let us consider the example of a circulating shlp when v = 30 knots,
T =4 min, and o = 80°,
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Taking the numerical values for the parameters of the sensing element as
in [ 2] we nave
r2=3.69-10"2, p?=2.03-10-% smec -2 (4.1)
Setting 2= 0,154 X 10-5sec~?, we obtain from (3.8) that
k1=1:37.10"3 sec~1  k, = 4.46-10"3 sec-1

Hence we have T,= 76.5 min., T,= 23.4 min.

The characteristic indices which correspond to the frequancies k, and
k, are by (3.10)
Ky g = +1.37.1073 ¢, %g 4= +- 4.46-1073 (4.2)
We shall compare our calculations with the results from paper [2) where

the characteristic equation is derived for the system with periodic coeffi-
clents (2.8) which for our case has the recursive form

P+ AP+ A2p®- d1p+1=10 (4.3)

This equation was also calculated on the high speed computer "STRELA" and
for the above numerical data 1t has the form

pt — 2.848p3% 4 3.809p2 — 2.848p 4 1.000 =0 (4.4)
The roots of this equation are
Pra= 0.946 4- 0.324 i, ps_‘=0.479 +0.8801¢ (4.5)

with modull equalling unity.
The characteristic indices corresponding to these roots sre determined
from Formulas
1
Ky = T Inp, {4.9)

and have the followlng numericai values:
%y 9= £ 1.37-10734, %y 4= - 4.46-1073i (4.7)

which coincides with the results in (%.2) obtalned by the method of averaging.

8. It is necessary to mention that a formel application of the method of
averaging to the systems (2.5) or (2.12) can lead to wrong conclusions about
their stability. Indeed, the system (2.12) is a apecial case of the aystem
with variable gyroscoplic and nonconservative forces of the form [13}

27 26+ M () 74 ) lgg () 3 + e (0 2] = 0 (5.1)
where k
Sk = = &k Ck— —Ckjp B €; =0 (6.2)

When a 3hip circulates these forces will have periodic coefficients of
period: equalling the period of a circulation.

When we formally average the system (2,12), the coefficients of 20 and
of Q- corresponding to g,, and e, in (5.13 vanish on the strength of
(3.2). Therefore the averaged equations obtained from (2.12) are & special

case of Xquations
x].' + 2bx5' + },j*xj =0 (5.3)

where by 1A' we denote the averaged coefficents i,(¢).

From the investigations of the stability of Equatlons (5.3) no conclusions
on the stability of the system (5.1) should be made, because in (5.3) we
neglected the variable gyroscopic forces, which in our case stabilize the
gyrosphere with respect to the coordinate y . Indeed, an equation of the
form (5.3) can be obtalned from (2.12) for the variable x, if we set x,
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and x, equal to zero. Mechanically this corresponds to the motion of a
system when gyroscopes cannot precess about the axes of their casings through
an angle 8 . Thus by formally averaging the system (2.5) with respect to
the period of circulation we are losing the main advantage of a twin-rotor
gyroscope, which 18 the gyroscopic moment T = 2§ sin c,8¢, stabilizing the
gyroshere with respect to the line North - South.

Transformation (2.9), however, puts (2.5) directly in the form
E Do g =0 =0y (5.4)
x

which 1s being expressed by the equations (2.11).

The gyroscoplc forces are thus taken into account; they are included in
the transformation (2.9). Using this transformation and introducing at the
same time arbitrarily small dlssipative forces the method of averaging does
not present any difficulties and facilitates considerably the process of
finding characteristic indices x, .

To obtain x, we could also use the method of small parameters [14]. It
is convenient to use  as the small parameter. Following the procedure
shown in [14], we have to set x,= x,(0) + p,(u) , where x, (0) are the
values of the characteristic indices pj = O ., We must mention, however,
that the method proposed in [14] for finding the function (u) leads in
our case to very lengthy calculations because in the expreséions for x, we
must take into account the terms with p® (see Formulas (3.10) and (3.11)).

6, We shall consider now a circulation from the eastern course and try
to obtain formulas describing the motion of the sensing element in the coox
dinates q, B, y and & . Substituting in (3.5) Vo= #n and neglecting
damping we obtain

&1 = &, (0) cos k,t + k-'E;" (0) sin k,t (6.1)
Further, from (2.9), (3.2) and (3.3) and also by (2.2) we have
onsequensty | BO =20, &0 =850 (6.2)
E, = z, (0) cos kyt + gk, 'z, (0) sin k,¢ (6.3)
Similarly
By = x4 (0) cos kyt 4 gk, ™'z4 (0) sin k,t (6.4)

Further, by (2.10) we obtain the expressions for x, and x,, and then
from (2.2) the expressions for x, and x, . Passing according to (2.1) to
the 1nitial variables, we obtain flnally

a = V2V (0) « (0) cos k¢t + gk,™* P (0) sin k,t) cos@ -+ (6.5)
+ (gks~' v (0) sin kot + 2Bg(Pl)-! sin &4 (0) 8 (0) cos kyt) sin 0}
B = (— k,g-W (0) & (0) sin k¢ + B (0) cos k,t) cosd +
=+ (v (0) cos kyt — 2B(P1)-! k, sin g, (0) 6 (0) sin kyt) sin 6

7= — (— kg~ (0) « (0) sin ky¢ + B (0) cos k,t) sing +
+ (1 (0) cos kyt — 2B(P1) 1k, sin g, (0) & (0) sin k,yt) cos®
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8 = — Y,PIB sin &, {(V (0) & (0) cos k,t + &2

+ gk;”1 B (0) sin %y2) sin® + (gk, 'y (0) sin kit +
=+ 2Bg(Ply sin &, (0) & (0) cos kyt) cos 0}

These expressions can be simplified and from them we can obtain the for-
mulas of Geckeler. When y,= 47 we have

sin@® = psin wf + O (%), cos® =1 4 0 (u?) (6.6)

Here o{p*) 1is the totality of all terms with u* and . of higher degree.
Consequently the first expression in (6.5) can be put in the form

o = V{V (0) & (0) cos vt + gv'B (0) sin vt +
+p (8’;; 7 (0) sin pt 4 2&—-2-—5;—;—3’& 8 (0) cos pt) sin mt} + 0 (¥ (6.7)

If we set here V=V (0) =~ Rucosqp end & = @ and take into account
(2.7) then with the accuracy up fo the terms with p? we shall have
A

FoosT B (0)sinvt +
2
+p [-—-v—-—— 7 (0) sin pt + 6 (0) tnp cos pt} sin ot (6.8)

putosg

o == o (0) cosvt 4

Similarly we have
p=— '_‘fgf.i?a (0) sin v¢ -+ B (0) cos v¢ —!—p[v (0) cos pt —
— Z4E09 5 (0)sin pt]sin ot (6.9)

If the conditions of the maneuver are such that u 1s a sufficlently
small quantity, then we can take into account in (6.7) only the first term

putting a = V-1{V(0)a(0)cos vt + gv-1By(0)sin vi] (6.10)

This result can be obtailned directly from the equations of Geckeler (1.2).

In the case of circulations from the northern course the final expresslons
for o , 8 , vy and & will have similar form as in (6.5), but will be some-
what more complicated, In particular, the terms with cos § in the expres-
sions for ¢ and g will contain terms depending on (0} and 8{0).

7. This analysis permits us to conclude that in investigating the free
motion of & gyrocompass and its stability during a ship's circulation the
principal criterion justifying the Geckeler simplification is the smallness
of the parameter u . When p<€1 the simplifications introduced by replac-
ing the initial equations by the Geckeler equations do not change the essen-
tial picture of the phenomenon, and it leads in general to correct conclu-
sions with respect to the expected accuracy of the course indication.

If the ship moves in such a way that the functlion 0 = n{¢) does not
change its sign when the course 1s changed {tnis corresponds to single turns,
or for example to & half circulation from the course O )}, then the method
presented here cannot be applied, because the averaging of the coefficlents
of the system (2.13) was carried out through the period of a whole clrcula-
tion. In such cases a very good accuracy can be obtained by using the method
presented in [2]. Let us mentlon, that in the case of a half circulation



On Geckeler's equations in the theory of gyrocompasses 875

from the northern course we can carry out the averaging through a semiperiod
of a cifculation.

10.

11.

12.

13.
14,
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